文章编号:CN23 - 1249(2003)02 - 0054 - 02

工时定额标准数据库的建立及应用

陈彦平,陈宝海,谢敬东,张海东

(哈尔滨锅炉厂有限责任公司,黑龙江 哈尔滨 150046)

摘 要:产品工时定额制定的质量与效率,将直接关系到企业的生产经营。结合现有的工时定额标准,就如何运用计算机辅助技术,找了出一条制定工时定额的捷径,并进行了重点论述和探索。

关键词:工时定额标准; Visual Fox pro6.0 数据库;应用程序

中图分类号:TK39 文献标识码:B

Establishment and Application of Manhour Quota Standard Database

CHEN Yan - ping, XIE Jing - dong, ZHANG Hai - dong

(Harbin Boiler Co., Ltd., Harbin 150046, China)

Abstract: The quality and effciency of product manhour quota has great relation with production in a enterprise. A new method to handle the manhour quota data was set up, which is based on available manhour quota standards and using computer aided technology.

Key words: manhour quota standard; Visual Fox Pro6.0 database; application program

0 引 言

劳动工时定额管理工作是企业的基础管理工作之一,它所提供的工时定额数据与资料准确与否,将直接影响到企业的生产经营。随着市场竞争的日趋激烈,不仅要求产品工时制定准确,而且要求制定快速。目前,大多数企业采用的是依据工时定额标准采用人工计算方法。这种方法很难满足现代企业生产经营的需要。经过长期的经验积累与积极探索,开发并应用了一套数据库应用系统。

1 数据库结构的建立

首先将有关的表格式工时定额标准转化为数据库结构形式,然后运用 Visual Fox Pro6.0 语言编制出相关的应用程序,在 Windows98 的支持下,实现计算机辅助计算产品工时定额的功能。

企业的工时定额标准,大多数是以表格的形式制定的。若想将其作为 Visual Fox Pro 软件编制的应用程序的数据库,转换的关键所在,就在于找出相关的工时定额标准的主要影响因素和次要影响因素,然后通过合理的方法,将主要影响因素转换成数据库的关键字段、将次要影响因素通过系数法加以区别。

1.1 备料工时定额标准数据库的建立

冷作车间的备料部分包括:划线、剪切、气割、 校正等,尽管影响工时的因素有所不同,但却有其 共同点,这就是:材料的面积(即长与宽尺寸)、厚 度与材质等。

将材料的面积、厚度等作为转换建立数据库的主要影响因素字段,通过具体工时数据的输入,即可建立起相应的工时定额标准数据库。

1.2 机械加工工时定额标准数据库的建立 机械加工部分包括诸如:各种型号的车床、钻

收稿日期:2002 - 10 - 15

作者简介:陈彦平(1962-),男.黑龙江哈尔滨人,1983年毕业于哈尔滨机电专科学校,经济师,从事生产计划管理工作。

床、镗床与刨床等设备相应的工种。尽管各种加 工设备的影响因素不尽相同,但主要的影响因素 却各自十分明显。通过对丁时定额标准的转换, 主要影响因素更加明显。如:车床,工件的直径与 长度等:钻床,工件的孔径与厚度等,具体到实际 的设备工种,将它们的主要影响因素,作为数据库 的关键字段,其它次要影响因素通过系数调整,通 过输入具体的工时数据,即可建立机械加工工时 定额标准的数据库。

1.3 焊接工时定额标准数据库的建立

尽管焊接方法多种多样、产品的焊缝不尽相 同,但总体来看,影响焊接工作量的主要因素,无 非是焊接方法、部件的坡口形式、厚度、长度与材 质等影响因素。

上述只是通过几种典型的设备与工种,论述 了表格式工时定额标准向数据库形式转化的方 法,其它设备工种情况类似。

应用程序的结构设计

2.1 应用程序的功能模块结构

调用工时定额标准数据库进行工时定额计算 的应用程序,是采用分层的模块结构,即菜单的调 用结构形式,在总控功能模块调节器下的各主菜 单无直接联系,各主要功能菜单、各级独立功能菜

单及各子菜单之间采模块调用的联系方式,模块 之间信息的传递是通过数据库文件及状态标志来 实现的。在多数情况下,上级模块仅具有请求调 用下级模块的权力,下级模块能否响应,取决于其 自身对数据库文件进行运行条件的检测,如果检 测成功则响应上级模块的调用,否则,不予响应。

2.2 模块程序结构流程图(见图 1)

丁时定额计算系统

输入密码进入总菜单

选择功能菜单

讲入相应子菜单

在输入区域框中输入揭示内容

程序自动打开相应数据并计算

显示计算结果并返回菜单

图 1 模块程序结构流程

程序的具体应用

以焊接方面的定额为例,影响焊接工作量的 因素,除了焊缝的长度和厚度主因素之外,还有不 可忽视的焊接方法、焊接方式、部件材质及焊缝坡 口形式等,运用系数进行具体转换。见表1。

表 1 焊接次影响因素系数对比情况

	手工电弧焊		手工氩弧焊	手工氩弧焊 二氧化碳焊		半自动焊		
	不同情况	系数	不同情况	系数	不同情况	系数	不同情况	系数
碳钢纵缝	V 型坡口包括底焊根	1	V 型坡口打底焊	1	角焊缝	1	X焊缝	1
碳钢环缝	V 型坡口包括底焊根	1.1	V 型坡要底焊	1.1	角焊缝	1.1	X焊缝	1.1
不锈钢纵缝	V 型坡口包括底焊根	1.3	V 型坡口打底焊	1.4	角焊缝	1.3		
不锈钢环缝	V 型坡口包括底焊根	1.4	V 型坡口打底焊	1.5	角焊缝	1.4		
备注	V 型坡口不包底焊根系数与包底焊根标准不同,但相应系数同。							

焊接方面具体操作举例:子菜单中选择焊接 方法 输入焊缝长度和焊缝高度(或板厚) 输入 调整系数 显示计算结果。

4 结 论

由此可见,次影响因素通过系数法进行具体 修正,即准确又快速,一般的工序均可运用该方法 进行具体修正。

运用计算机辅机技术,结合工时定额标准,进 行产品的工时定额计算,不仅制定准确,而且计算 快速,从而为实现工时定额制定工作的微机化,奠 定了基础,进而为公司的生产经营工作及时提供 了准确可靠的工时数据与资料。

(编辑:董力宏)